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SUMMARY

Damage detection techniques have been proposed to exploit changes in modal parameters and

to identify the extent and location of damage in large structures. Most of such techniques,

however, generally neglect the environmental e�ects on modal parameters. Such environmental

e�ects include changes in loads, boundary conditions, temperature, and humidity. In fact, the

changes due to environmental e�ects can often mask more subtle structural changes caused by

damage. This paper examines a linear adaptive model to discriminate the changes of modal

parameters due to temperature changes from those caused by structural damage or other envi-

ronmental e�ects. Data from the Alamosa Canyon Bridge in the state of New Mexico were used

to demonstrate the e�ectiveness of the adaptive �lter for this problem. Results indicate that

a linear four-input (two time and two spatial dimensions) �lter of temperature can reproduce

the natural variability of the frequencies with respect to time of day. Using this simple model,

we attempt to establish a con�dence interval of the frequencies for a new temperature pro�le

in order to discriminate the natural variation due to temperature.

KEY WORDS: Adaptive �lter, modal parameters, temperature e�ect, Alamosa Canyon Bridge, damage

detection

1 INTRODUCTION

Many techniques have been proposed to identify the extent and location of damage in

large structures using changes in the structures' modal parameters. These methods typi-

cally determine the baseline parameters through acquisition of forced or ambient vibration

test data. Damage detection is then based on the premise that damage in the structure

will cause changes in the measured vibration data. Existing methods, however, neglect

the important e�ects of environmental changes on the underlying structure. Changes

in load, boundary conditions, temperature and humidity can have a signi�cant e�ect on

the underlying natural frequencies of large civil structures. In fact, the changes in the

modal parameters due to environmental factors can be much larger than those caused by
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structural damage. During damp weather, for example, concrete bridges in the United

Kingdom are reported to absorb considerable amount of moisture, which thus increases

their masses and alters their natural frequencies.12 Before damage detection systems can

be reliably employed to monitor real structures, the variability of the modal parameters

must be quanti�ed.

This paper mainly studies the thermal e�ects on the non-stationary responses of

bridges due to temperature changes. Very few researchers have addressed such a prob-

lem. Churchward and Sokal4 attempted to predict the temperature distribution within

bridge sections and to determine longitudinal expansion and vertical deection based on a

three-year monitoring of a post-stressed concrete section of a bridge. The measured envi-

ronmental parameters include ambient air temperature, solar radiation, hours of sunshine

and the temperature on the top surface of the section. It is found that the temperature

pro�le can be reasonably represented using two design variables, namely maximum dif-

ferential temperature and base temperature. Wood12 reported that the changes of bridge

responses were closely related to the structural temperature based on the vibration tests

of �ve bridges in the United Kingdom. Analyses based on the data compiled suggested

that the variability of the asphalt elastic moduli due to temperature e�ects was a major

contributor to the changes in the structural sti�ness.

Askegaard and Mossing2 tested a three-span RC footbridge to investigate if modal

parameters can provide a long term indication of structural deterioration or crack forma-

tion. Seasonal changes of modal parameters were also monitored for a three-year period,

and about 10% change in frequency was repeatedly observed for each year. The authors

concluded that the change was partially attributed to the variation of ambient temper-

ature. Moorty10 attempted to relate the responses of a bridge to thermal environmental

conditions. An analytical model was developed to obtain the temperature-induced move-

ments and the associated stresses in the bridge. A �eld test was conducted on the Sutton

Creek Bridge in Montana, USA. The movements obtained from both the analytical model

and the measured values showed signi�cant expansion of the bridge deck as temperature

increased. A comprehensive research program on the Confederation Bridge in Eastern

Canada has started in the spring of 1997 and will continue over many years to evaluate

the e�ect of temperature on the short term and long term behavior of the bridge.5 Data

on temperature and strain in the various components of the bridge, movement at expan-

sion joints and deformation of the piers have been collected hourly. The extensive data

collected will be used to develop computer models for predicting temperature e�ects in

concrete bridges.

This paper presents an adaptive �lter that accommodates the changes in temperature

to the damage detection system of a large-scale bridge. This system determines modal

frequencies using conventional modal analyses, but is able to adapt its prediction of the

underlying natural frequencies of the structure based upon a time-temperature pro�le.

This allows the system to discriminate the changes of modal parameters due to tempera-

ture changes from those caused by other environmental factors or structural damage. For

example, when the measured frequencies move outside the predicted con�dence intervals,

the system can provide a reliable indication that structural changes are likely caused by

factors other than thermal e�ect. Actual data collected from the Alamosa Canyon Bridge
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in New Mexico are used to train and test the system.

The paper is organized as follows. The next section describes the experimental setup

at the Alamosa Canyon Bridge. Section 3 presents the training of the adaptive �lter and a

selection procedure of temperature input variables. Section 4 presents the construction of

con�dence intervals for prediction, and the examination of prediction performance using

real test data. The paper concludes with a discussion of future research in Section 5.

2 DESCRIPTION OF THE ALAMOSA CANYON BRIDGE TEST

The Alamosa Canyon Bridge is located near the town of Truth or Consequences in south-

ern New Mexico and is approximately aligned in the north and south direction. This

bridge has seven independent spans and each span consists of a concreted deck sup-

ported by six W30x116 steel girders. The top anges of the girders are embedded in the

concrete slab. The roadway in a span is approximately 7.3 m (24 ft) wide and 15.2 m

(50 ft) long. Along the length of each span, four sets of crossing braces are equally spaced.

Figure 1 depicts a side view of the Alamosa Canyon Bridge. More detailed description

of the bridge can be found in Farrar et al..7

A new bridge has been constructed adjacent to this old Alamosa Canyon Bridge and

since that time the tested bridge has not been used for regular tra�c. During the past

three years, however, the bridge has been tested several times by the Engineering Analysis

Group of the Los Alamos National Laboratory (LANL). An attempt to characterize

the natural variability of modal parameters was conducted in 1996.7 The inherent

uncertainty in the measured modal parameters was also studied using experimental test

data from the bridge.6

This current study uses the results of the vibration tests conducted on July 27-August

2, 1996 and July 21-25, 1997, referred to here as the �rst and second data sets, respec-

tively. The test data were provided to the authors by the Engineering Analysis Group

of the LANL. The �rst data set was used to train the adaptive �lter while the second

data set was used to test the predictor. For both tests, only one span was implemented

with sensors and tested. A total of 31 accelerometers were placed on the concrete deck

and on the girders below the bridge. Five accelerometers were spaced along the length of

each girder. Since there were six girders, a total of 30 accelerometers were placed on the

girders. The last accelerometer was placed near the driving point. The time histories of

accelerations and an excitation force were recorded, and the frequency response functions

(FRFs) were computed from the time histories. The FRFs were calculated for the range

of 0 to 50 Hz with the resolution of 0.0625 Hz. Thirty averages were used for all FRFs.

An impact hammer which weighted approximately 53.4 N (12 lbs) was used to excite the

bridge. The data acquisition for each test took 30 � 45 minutes. The modal parameters

were extracted using the Eigensystem Realization Algorithm (ERA).8 Approximately

nine meaningful modes were identi�ed from the ERA within the range of 0 to 30 Hz.

At the same time, temperature measurements were made on nine di�erent locations

across the center of the span. Figure 2 illustrates a cross-section view of the bridge

and the distribution of the indoor/outdoor thermometers, as follows: The bottom west

outdoor sensor (T8) was attached to the outside of the west-end exterior girder at the mid

height of the web. The bottom west indoor sensor (T6) was located on the inside bottom
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Figure 1: A side view of the Alamosa Canyon Bridge

ange of the west-end exterior girder. The bottom center sensor (T9) was taped beneath

the concrete deck at the center of the span. The top west outdoor sensor (T2) was located

next to the concrete curb at the west-end of the deck. The top west indoor sensor (T4) was

placed on the top of the west-end guard rail. The four remaining sensors (T1, T3, T5 and

T7) were placed on the east end of the span symmetrically to the west-end sensors. All

sensors were protected from the direct contact with sunshine either by the bridge itself or

by the shades made from duct tape and cups. However, the temperature measurements

were not the most precise measurements that could have been made. Attempts were made

to calibrate the thermometers prior to the tests, but the the accuracy of the readings was

not that which could be obtained with typical thermocouples.

The �rst vibration test was performed every two hours over a 24-hour time period

to investigate the change of modal parameters with respect to time of day. The test

started on July 31, 1996 at 09:15 and ended on August 1, 1996 at 9:22. The air was

dry throughout the test. Farrar et al.7 showed that the measured �rst mode frequency

varied approximately 5% during the 24-hour test period, and the change in the measured

fundamental frequency was found to correlate with the temperature di�erence across the

deck. Similar variations and correlation with deck temperature di�erence were observed

for the other modes of the bridge. Table 1 summarizes the measured frequencies and

temperatures from the �rst vibration test. The temperature of a given time in Table 1 is

an average of the thermometer readings before and after each vibration test. In addition

to the temperature e�ect, tra�c, winds, deterioration of the bridge and other environ-

mental conditions could produce changes of the modal parameters. However, since the

bridge was not used and the weather was calm during the test period, it is assumed that

any changes of the modal parameters are mainly the result of the temperature changes.

The second test was conducted about one year after the �rst test. The second test

started on July 22, 1997 at 04:00 and ended at midnight. Vibration tests were performed

eleven times every two hours. A note is in order about the weather conditions prior to

the second vibration test; it had been raining hard from approximately 10:00 PM the

previous night of the testing until 3:00 AM. When the data acquisition was started at

4:00 AM, rain was su�cient to produce ponds of water near the curbs and drainage

paths were blocked by debris. The concrete deck was su�ciently cracked such that a
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fair amount of moisture might have been absorbed by the bridge. In the second testing,

no temperature sensor was placed at the bottom center. The other thermometers were

placed almost in the same locations as those of the �rst testing. Table 2 summarizes the

results from the second vibration test.

18cm(7’’)

C 12 x 25 6 W 30 x 116 @ 147cm (58’’) o.c.

3.66m ( 12’)3.66m ( 12’)

T1T2

T3T4

T5T6

T7T8

T9

Figure 2: A cross section view and thermometer locations of the Alamosa Canyon Bridge

Table 1: Summary of the �rst data set
Time Freq. (Hz) Temperature (Fo)

1st 2nd T1 T2 T3 T4 T5 T6 T7 T8 T9

09:15 7.556 8.311 76.00 90.70 93.30 95.90 83.55 77.20 103.7 75.55 77.45

11:30 7.621 8.384 85.80 106.15 101.10 99.70 93.90 84.50 93.90 83.30 83.10

13:12 7.475 8.084 108.15 115.60 100.65 103.00 93.55 91.20 93.20 91.85 88.60

15:13 7.343 7.874 109.60 110.70 102.00 102.60 92.80 93.70 93.60 95.50 94.60

17:52 7.394 7.972 104.35 99.25 97.40 99.25 91.20 95.05 92.60 96.05 98.35

20:09 7.376 8.042 88.00 87.00 74.40 76.05 77.80 78.90 79.50 79.50 91.35

21:20 7.334 8.037 85.90 86.40 76.10 77.55 79.95 80.35 80.00 79.45 89.95

23:29 7.356 8.087 79.60 81.50 72.70 74.20 75.00 75.60 75.30 74.30 80.50

01:21 7.328 8.071 79.55 79.35 70.05 72.05 75.20 75.10 74.85 74.75 80.70

03:19 7.353 8.119 74.55 75.15 65.85 66.65 70.25 71.70 72.15 70.85 77.20

05:19 7.381 8.157 72.85 72.85 64.15 65.50 68.80 70.00 70.15 68.90 74.10

07:03 7.389 8.178 70.85 73.85 66.90 68.10 66.70 67.85 73.80 67.35 72.10

09:22 7.577 8.342 74.45 92.75 94.00 93.20 83.90 77.55 102.00 75.50 76.00

3 MODEL FORMULATION

First, prediction of the fundamental frequency was selected as a target for this study

and the same procedure is repeated for the second mode frequency. It was presumed

that the temperature changes of the bridge were mainly responsible for the variation of

the frequencies. This assumption seems reasonable since the bridge was no longer in

service and there was no signi�cant change of weather conditions on the �rst test day.

Observations of the bridge data coupled with some engineering judgment led to three

additional assumptions that appear simplistic but are important factors in the design of

the �lter architecture: (1) changes in the modal parameters are linearly proportional to

changes in temperature; (2) the mass of the bridge forced the change in modal parameters

to lag behind the temperature, that is, the bridge takes some time to warm up and cool

o�; and (3) the geographical (north-south) orientation of the structure with respect to
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Table 2: Summary of the second data set
Time Freq. (Hz) Temperature (Fo)

1st 2nd T1 T2 T3 T4 T5 T6 T7 T8 T9

04:00 7.303 8.100 79.70 76.95 80.35 76.10 70.60 70.45 69.30 69.15 NA.

06:02 7.329 8.136 79.05 76.55 81.95 80.15 68.85 69.35 68.20 67.55 NA.

08:00 7.528 8.281 79.50 87.80 88.95 94.20 74.70 71.50 68.20 71.30 NA.

10:02 7.638 8.524 79.80 111.75 96.60 109.30 67.60 77.35 68.20 77.00 NA.

12:00 7.579 8.249 100.05 121.00 113.25 109.85 67.60 82.75 68.20 83.90 NA.

14:01 7.503 8.143 113.80 120.00 112.80 100.85 67.60 88.70 68.20 91.05 NA.

16:00 7.449 8.008 104.35 102.65 102.05 97.05 88.45 91.65 90.40 91.10 NA.

18:00 7.361 8.030 92.50 90.50 82.60 81.70 82.00 82.20 82.20 84.60 NA.

20:05 7.321 8.070 80.20 81.40 72.75 73.50 74.35 73.50 73.85 73.60 NA.

21:54 7.319 8.094 78.10 77.75 71.05 71.05 72.85 73.60 72.85 71.60 NA.

24:00 7.347 8.132 75.30 74.95 68.30 66.90 70.65 71.30 70.90 69.15 NA.

the sun suggests that the temperature of the west end of the bridge will have a time-lag

behind the temperature of the east end.

Given these assumptions, a linear predictor is chosen as a system architecture. A

linear �lter simply creates a linear one-to-one mapping on input and output pairs. It

a�ords explicit calculation of the �lter coe�cients using a simple matrix calculation and

allows future modi�cation of these coe�cients using adaptive least-mean squares error

minimization. The �lter operates in two modes: training and prediction. Training is

described in this section. Section 4 describes a validation regarding the applicability of

the �lter for prediction by testing its performance on the second data set.

3.1 Training the Linear Filter Model

The architecture of the linear �lter takes a subset of the temporal and spatial temperature

pro�les as inputs and delivers a single output that represents the estimated, or predicted,

fundamental frequency. (Later, the same procedure is repeated for the second mode

frequency.) In this sense, the �lter is also a multiple linear regression model, but is more

commonly termed a predictor or estimator. Determining the appropriate subset of the

available temperature pro�les is termed the variable selection problem and is discussed

in Section 3.2. The method of Least Mean Squares (LMS) error minimization is used to

estimate the coe�cients of the predictor.11

The �lter models the relationship between the selected bridge temperature inputs,

x = [x1 x2 : : : xr]
T , a column vector of r inputs, and its measured fundamental frequency,

y, at that temperature pro�le as a linear function:

y = w0 + xTw + � (1)

where w0 is bias or o�set, w is a column vector of coe�cients that weighs each temper-

ature input, and � is the �lter error. Equation (1) can be rewritten to account for the

o�set term w0 by rede�ning the input and weight vectors to have p (= r+1) dimensions:

y = xTw + � (2)
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where x = [1 x1 x2 : : : xr]
T and w = [w0 w1 : : : wr]

T . Figure 3 depicts the �lter

to implement this model. In order to consider both the time and spatial variation of

temperature, the temperature readings at the current time Ti and the previous time T 0

i

are used as input variables. That is, x = [ 1 T1 : : : T9 T 0

1
: : : T 0

9
]T in Figure 3. The

�lter imposes a strictly linear mapping.

Suppose that n observations are available and let x(i) and y(i) denote the ith input-

output pairs. Equation (2) can be written in matrix notation:

y = Xw + � (3)

where, with n observations

y =

2
6664
y(1)

y(2)
...

y(n)

3
7775 ; X =

2
6664
1 x1(1) x2(1) : : : xr(1)

1 x1(2) x2(2) : : : xr(2)
...

...
...

...

1 x1(n) x2(n) : : : xr(n)

3
7775 ; � =

2
6664

�(1)

�(2)
...

�(n)

3
7775

The LMS error minimization is employed to estimate the �lter coe�cients. We wish

to �nd the vector of the �lter coe�cients w that minimizes the expected value of the

square of the �lter error:

min
w

E [ �(i)2 ] (4)

where E [ �(i)2 ] is the mean of the �lter errors created by n observations. E [ �(i)2 ] can

be rewritten as follows. The index i is omitted for notational simplicity after the �rst

line.

E [ �(i)2 ] = E [ (y(i)�wTx(i))2 ] (5)

= E [ (y �wTx)2 ]

= E [ y2 +wTxxTw� 2yxTw ]

= E [ y2 ] +wTE [ xxT ]w � 2E [ yxT ]w

= E [ y2 ] +wTRw� 2pTw

whereR (=E[ xxT ]) is the autocorrelation of the random input vector x, and p (=E[ yxT ])

is the cross-correlation between the desired output and the input vector. We note that

E [ �2 ] is quadratic with w and thus can be solved for a single extrema (minima) with

respect to w. The estimated coe�cients, ŵ, are found by di�erentiating Equation 6 with

respect to w and setting the result equal to zero:

r(E [ �2 ]) =
@E [ �2 ]

@w
= 2(Rŵ� p) = 0 (6)

Solving for ŵ,

ŵ = R�1p (7)
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Equation (7) is called the Wiener-Hopf equation and is used to determine the estimated

coe�cients, ŵ, for a given set of input-output pairs.

One should note that the actual �lter output error that results after applying the

Wiener-Hopf equation is dependent upon the number of input-output mappings (n) that

are used to determine ŵ and the dimension of ŵ, p. If the �lter is under-speci�ed, that is,

the number of input-output pairs is less than the dimension of ŵ, then the Wiener-Hopf

equation will produce an unlimited number of di�erent ŵ's that result in zero error (�

= 0). This means that there exists an in�nite number of weights that will produce zero

error for the given observation sets.

Since the training data set was �xed for this study, we decided to reduce the dimension

p. In the derivation of Equation (1), all input variables are assumed to be inuential in

predicting the output response. However, in most practical applications, the analyst

must check the signi�cance of each input and determine some optimal subset of inputs

from a pool of candidate inputs. This variable selection is equivalent to pruning irrelevant

or redundant inputs from the �lter of Figure 3, and the procedure is addressed in the

following subsection.
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Figure 3: A linear adaptive �lter

3.2 Input Variable Selection

We presume that the changes of the fundamental frequency are related to the spatial

and temporal variations of temperatures across the bridge. In order to consider both the

time and spatial variations of temperature, we decide to de�ne the temperature readings

at the current time Ti, and at the previous time T 0

i
as an initial pool of candidate input

variables. Let k denote the size of this input pool. While the number of candidate input

variables are eighteen (nine temperature readings at the current time and the other nine

from the one step previous time), the number of observations from the �rst vibration
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test is thirteen (n = 13). Therefore, the selection of input variables should be conducted

to reduce the size of the �lter before any estimation of the �lter coe�cients. In general,

a model with smaller number of input variables are more desirable because the variance

of the prediction ŷ increases as the number of inputs increases. Also, addition of extra

inputs increases the costs of data collection and model maintenance.

Table 3: Correlation of the measured fundamental frequency and the thermometer readings

y T1 T2 T3 T4 T5 T6 T7 T8 T9
y 1:000

T1 �0:097 1.000

T2 0:435 0.835 1.000 Sym.

T3 0:608 0.684 0.941 1.000

T4 0:580 0.707 0.943 0.997 1.000

T5 0:485 0.787 0.969 0.966 0.966 1.000

T6 0:130 0.949 0.901 0.839 0.853 0.916 1.000

T7 0:741 0.396 0.750 0.910 0.909 0.807 0.605 1.000

T8 0:065 0.968 0.883 0.804 0.820 0.886 0.996 0.556 1.000

T9 �0:232 0.886 0.641 0.518 0.540 0.668 0.870 0.283 0.889 1.000

First, the correlation of the nine sensor readings and the measured fundamental fre-

quency is investigated. Table 3 presents the resulting correlation matrix. The correlation

matrix shows that temperatures at the top east indoor (T3) and at the top west indoor

(T4) are very closely related. (Figure 2 shows the locations of the thermometers.) The

temperature at the bottom west indoor (T6) is also strongly correlated to the temper-

ature at the bottom west outdoor (T8). T4 is deleted from the �lter model because T3
has a larger correlation with the observation output y than T4. For the same reason, T6
is kept in the model and T8 is excluded. Since the second data set did not measure the

temperature at the bottom center, the variable selection did not include T9. Now, the

number of candidate input variables becomes twelve (k=12).

Next, an exhaustive search of all possible subsets of the remaining input variables

is conducted using the SAS (Statistical Analysis System) program and the exhaustive

search took on a SUN ULTRA-2 workstation less than a minute. If the intercept weight

wo is always included, a total of 2k models should be examined. In this example, there

are 212 (=4096) possible models. This study employs adjusted R2
statistic for comparing

di�erent models. To explain adjusted R2 statistic, let R2

p
denote the coe�cient of multiple

determination for a model with reduced size p (� k + 1). Computationally

R2

p
=

SSR(p)

Syy
= 1�

SSE(p)

Syy
(8)

and

Syy =

nX
i=1

[y(i)� �y]2; SSR(p) =

nX
i=1

[ŷ(i)� �y]2; SSE(p) =

nX
i=1

[y(i)� ŷ(i)]2 (9)
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Table 4: The best �ve models for each given number of input variables
# r �R2

R
2

pred Selected Input Variables

1� 9 0.99801 0.96958 T1 T2 T5 T6 T
0

1 T
0

3 T
0

5 T
0

6 T
0

7

2 0.99718 0.98144 T1 T2 T3 T6 T
0

1 T
0

3 T
0

5 T
0

6 T
0

7

3 0.99678 0.98716 T1 T2 T6 T
0

1 T
0

2 T
0

3 T
0

5 T
0

6 T
0

7

4 0.99665 0.86686 T1 T2 T6 T7 T
0

1 T
0

3 T
0

5 T
0

6 T
0

7

5 0.99424 0.72374 T1 T2 T6 T7 T
0

1 T
0

2 T
0

3 T
0

5 T
0

7

6� 8 0.99747 0.99374 T1 T2 T6 T
0

1 T
0

3 T
0

5 T
0

6 T
0

7

7 0.99517 0.98352 T1 T2 T3 T6 T
0

1 T
0

3 T
0

5 T
0

7

8 0.99324 0.97479 T2 T3 T7 T
0

1 T
0

2 T
0

3 T
0

5 T
0

6

9 0.99320 0.97169 T1 T3 T7 T
0

1 T
0

2 T
0

3 T
0

5 T
0

6

10 0.99318 0.93469 T1 T2 T6 T
0

1 T
0

2 T
0

3 T
0

5 T
0

7

11� 7 0.99373 0.98514 T3 T7 T
0

1 T
0

2 T
0

3 T
0

5 T
0

6

12 0.99302 0.98485 T2 T3 T
0

1 T
0

2 T
0

3 T
0

5 T
0

6

13 0.99293 0.96718 T1 T3 T7 T
0

1 T
0

2 T
0

3 T
0

5

14 0.99277 0.96203 T1 T2 T3 T7 T
0

2 T
0

3 T
0

5

15 0.99275 0.97943 T3 T5 T6 T7 T
0

2 T
0

3 T
0

5

16� 6 0.99387 0.98804 T1 T3 T7 T
0

2 T
0

3 T
0

5

17 0.99373 0.98639 T3 T7 T
0

1 T
0

2 T
0

3 T
0

5

18 0.99369 0.98766 T3 T6 T7 T
0

2 T
0

3 T
0

5

19 0.99360 0.98694 T3 T7 T
0

2 T
0

3 T
0

5 T
0

7

20 0.99358 0.98733 T3 T
0

1 T
0

2 T
0

3 T
0

5 T
0

6

21� 5 0.99428 0.99112 T3 T7 T
0

2 T
0

3 T
0

5

22� 0.99414 0.99062 T1 T3 T7 T
0

2 T
0

3

23� 0.99386 0.99054 T2 T3 T7 T
0

2 T
0

3

24 0.99361 0.98613 T3 T6 T7 T
0

2 T
0

3

25 0.99351 0.98878 T3 T7 T
0

2 T
0

3 T
0

7

26� 4 0.99410 0.99165 T3 T7 T
0

2 T
0

3

27 0.98934 0.98275 T3 T
0

1 T
0

2 T
0

3

28 0.98885 0.98131 T3 T
0

2 T
0

3 T
0

6

29 0.98757 0.97702 T2 T3 T
0

2 T
0

3

30 0.98735 0.97116 T3 T5 T
0

2 T
0

3

31� 3 0.98809 0.97809 T3 T
0

2 T
0

3

32 0.94915 0.90774 T
0

1 T
0

3 T
0

5

33 0.94346 0.89520 T5 T
0

2 T
0

3

34 0.93581 0.89347 T3 T
0

2 T
0

7

35 0.91828 0.87422 T3 T
0

2 T
0

5

* Theses models are retained for further comparison and investigation.
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where Syy, SSR(p) and SSE(p) denote the total sum of squares, the regression sum of

squares, and the residual sum of squares of a model with p weightings, respectively.

Furthermore, �y denotes the mean of the output observation (�y =
P

n

i=1
y(i)=n) and n is

the number of observations. R2

p
increases as additional input variables are introduced to

the model and reaches the maximum when p = k + 1.

The analyst might use this criterion by adding input variables to the model up to the

point where an additional variable is not useful in that it provides only a small increase in

R2

p
. However, since R2

p
increases as p increases, using R2

p
to determine the optimal models

is not straightforward. To avoid this di�culty, this study prefers to use an adjusted R2

statistic de�ned as9:

�R2

p
= 1�

�
n� 1

n� p

�
(1�R2

p
) (10)

Note that �R2

p
statistic does not necessarily increase as p increases. Consequently, one can

consider the model that has the maximum �R2

p
value an optimum model.

Table 4 shows the �ve best models that maximize �R2

p
for each given number of inputs,

3 � r � 9. The �rst column of Table 4 shows the identi�cation numbers of the examined

models. The best models for each given r (3 � r � 9) are retained for further comparison

(models 1, 6, 11, 16, 21, 26 and 31). Note that three models (models 21, 22, and 23)

with �ve input variables and model 26 with four inputs have larger �R2

p
values than the

models (models 11 and 16) with the largest �R2

p
values for r = 7 and r = 6. Therefore,

models 22 and 23 are also retained for further investigation. The �lter system appears

to approach the optimal architecture in terms of �R2

p
statistic, when the size of inputs is

about four or �ve (4 � r � 5).

Furthermore, we want to estimate the prediction performance of the model before

future observations become available. A possible procedure is to split the training data

into two parts: the estimation data and the prediction data. The estimation data is

used to build the model, and the prediction data is employed to estimate the prediction

capability of the model. The basic process is summarized as follows1:

1. Select an observation y(i) as prediction data.

2. Fit the model to the remaining n� 1 estimation data and use the model to predict

the withheld observation (denote ~y(i) as the predicted value corresponding to y(i)).

3. Compute the deleted residual de�ned as e(i) = y(i)� ~y(i).

4. Repeat this procedure for all observations.

The PRediction Error Sum of Squares (PRESS) statistic is then de�ned as the sum of

the deleted residuals. That is, PRESS=
P

n

i=1
[y(i) � ~y(i)]2. Finally, an approximate R2

for prediction is computed as:

R2

pred
= 1�

PRESS

Syy
(11)

This R2

pred
is used as a complementary criterion and shown in the fourth column of

Table 4.
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For the remaining models (models 1, 6, 11, 16, 21, 22, 23, 26 and 31), two hypothesis

tests (the F - and t-statistic tests) are conducted to measure model adequacy. These tests

assume that the errors, �(i), in Equation (3) are normally and independently distributed

with zero mean and variance �2
�
. A detailed description for the F - and t-statistic tests

can be found in Reference 9.

First, the F -statistic test determines if there is a linear relationship between the

output and any of the input variables. The appropriate hypotheses are

H0 : wi = 0 for all i (12)

H1 : wi 6= 0 for at least one i

The hypothesis H0 is rejected if F0 > F�;r;n�r�1. Here, F0 is a ratio of SSR=r to SSE=(n�

r�1), and F�;r;n�r�1 can be found from a statistical table of the F distribution. SSR=�
2

�

and SSE=�
2

�
have �2 distributions with r and (n�r�1) degrees of freedom, respectively.

Furthermore, F0 (=(n � r � 1)SSR=kSSE) have a F distribution with r and n � r � 1

degrees of freedom for numerator and denominator, respectively. Rejection of H0 implies

that at least one of the inputs contributes signi�cantly to the model. Table 5 presents

the LMS estimation of the weighting coe�cients and the F -statistic of the remaining

models (models 1, 6, 11, 16, 21, 22, 23, 26 and 31). The last column of Table 5 shows

that for all the selected models, the linear relationship between the inputs and output

is signi�cant. However, the passing of the F -statistic test does not necessarily indicate

that the model examined is an appropriate one for predicting the output. Further tests

of model adequacy are required.

Next, the t-statistic test examines the signi�cance of the individual �lter coe�cient to

the model given the other inputs in the model. The hypotheses for testing the signi�cance

of any input, such as wi, are

H0 : wi = 0 (13)

H1 : wi 6= 0

If jt0j > t�=2;n�r�1, the hypothesis H0 is rejected implying that the examined input

contributes signi�cantly to the model. Here, t0 (= wi=

q
Ĉi �2� ) has a t distribution, Ci

is the ith diagonal element of (XTX)�1, and �̂2
�
is an unbiased estimate of the sum of

squared errors of the system:

�̂2
�
=

nX
i=1

[y(i)� ŷ(i)]
2

n� p
(14)

The value of t�;r;n�r�1 is found from a statistical table of the t distribution. Note that

this examines only the marginal contribution of one input given the other inputs are in

the model. Table 6 shows the results of the t-statistic test. Each �lter coe�cient that

does not pass the t-statistic test is subscripted by an asterisk * in Table 6. Except for

models 6, 26 and 31, the hypothesis H0 : wi = 0 is not rejected. This indicates that the

other models contain redundant inputs that can be deleted from the models.

12



Table 5: The estimated weights for the selected models

# r Estimated Weightings

ŵo ŵT1
ŵT2

ŵT3
ŵT5

ŵT6
ŵT7

(�10�2) (�10�3) (�10�3) (�10�3) (�10�2) (�10�3)

1 9 7.457 -1.276 7.548 -4.179 1.419

6 8 7.559 -1.102 5.346 0.964

11 7 7.530 6.055 -1.162

16 6 7.572 -0.053 7.832 -2.358

21 5 7.580 7.478 -2.171

22 5 7.517 -0.070 8.105 -2.287

23 5 7.527 -0.633 8.462 -2.367

26 4 7.509 7.694 -1.992

31 3 7.429 5.957

ŵT 0

1
ŵT 0

2
ŵT 0

3
ŵT 0

5
ŵT 0

6
ŵT 0

7
Fo(F�;r;n�r�1)

(�10�3) (�10�2) (�10�2) (�10�2) (�10�2) (�10�3)

1 9 -9.258 1.303 -1.557 1.311 -5.822 670.487(>6.04)

6 8 -8.288 1.427 -1.475 1.029 -6.454 592.828(>4.88)

11 7 -4.049 -0.997 1.047 -0.785 0.628 272.680(>4.28)

16 6 -1.453 1.095 -0.186 325.259(>3.97)

21 5 -1.503 1.147 -0.232 418.202(>3.84)

22 5 -1.490 1.002 408.356(>3.84)

23 5 -1.573 1.050 389.600(>3.84)

26 4 -1.575 1.044 506.328(>3.86)

31 3 -1.480 1.005 332.842(>4.10)

Finally, model 26 with inputs T3, T7, T
0

2
and T 0

3
is selected as a satisfactory model for

the prediction of the second data set since (1) the �R2

p
value of model 26 is comparable

to that of model 6 or better than model 31, (2) the R2

pred
value of model 26 is higher

than the other models (except model 6), (3) this model passes both the F - and t-statistic

tests, and (4) model 26 has only half as many inputs as model 6. From Equation (7),

the LMS estimator of ŵ is computed for model 26:

ŵ =

2
66664

ŵo

ŵT3

ŵT7

ŵT 0

2

ŵT 0

3

3
77775 =

2
66664

7:509

0:007694

�0:001992

�0:01575

0:01044

3
77775 (15)

Usually, the selection of an optimal model is not a computationally trivial task. One

should also check if the model is physically reasonable. The selection of model 26 and

the estimated �lter coe�cients in Equation (15) reveals that (1) the response change of

the Alamosa Canyon Bridge lags the temperature of the bridge (the temperatures of two

hours before the current time contribute more signi�cantly to the change of the current
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frequency than the temperatures at the current time: ŵT 0

2
and ŵT 0

3
are approximately ten

times larger than ŵT3
and ŵT7

), and (2) the temperature gradient between the top west

outdoor and the top east indoor (0.01044T 0

3
-0.01575T 0

2
) largely inuences the variation

of the fundamental frequency. This supports the observation in Reference 7 that the

changes in modal frequencies are related to the temperature di�erentials across the deck.

Figure 4 shows how well the selected model 26 reproduces the �rst mode frequency

from the �rst data set which is employed for the training of the �lter. Note that only

three temperature readings at the top west outdoor, top west indoor and bottom east

outdoor out of the total of nine thermometers are necessary to reasonably estimate the

change of the fundamental frequency.

Table 6: The t-statistic test of each weight for the selected models

ID# r t-statistic (to)

ŵo ŵT1
ŵT2

ŵT3
ŵT5

ŵT6
wT7

1 9 84.166 -7.548 4.629 -1.445� 4.292

6y 8 125.900 -8.255 8.156 8.557

11 7 72.692 4.313 -1.070�

16 6 103.642 -0.729� 9.824 -3.339

21 5 108.696 12.248 -3.416

22 5 247.207 -1.030� 11.420 -3.338

23 5 202.962 -0.832� 7.682 -3.033

26y 4 254.457 13.071 -3.188

31y 3 330.891 18.800

ŵT 0

1
ŵT 0

2
ŵT 0

3
ŵT 0

5
ŵT 0

6
ŵT 0

7
t�;r;n�r�1

1 9 -9.612 10.609 -10.160 5.281 -5.365 3.182

6y 8 10.639 14.386 -9.184 5.943 -5.763 2.776

11 7 -1.099 -2.247� 6.727 -1.465� 0.999� 2.571

16 6 -13.107 8.460 -0.830� 2.447

21 5 -17.902 11.023 -1.120� 2.365

22 5 -14.985 15.724 2.365

23 5 -27.998 20.699 2.365

24 5 -14.996 15.811 2.365

25 5 -18.894 8.911 0.519� 2.365

26y 4 -28.639 21.193 2.306

31y 3 -22.566 14.820 2.262

y Only these models pass the t-statistic test. � These coe�cients do not pass the

t-statistic test.

4 PREDICTION USING A TRAINED MODEL

The adaptive �lter established in the previous section was used to predict the funda-

mental natural frequency of the bridge. The predicted value is then used to discriminate

the changes of the fundamental natural frequency caused by temperature e�ects from
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Figure 4: Reproduction of the �rst mode frequency using a linear �lter
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Figure 5: Prediction of the �rst mode frequency using a linear �lter

changes caused by other environmental e�ects or potential damage of the structure. For

example, let x0 denote a vector of new temperature readings. A point prediction ŷ0 of

the fundamental natural frequency at the temperature pro�le becomes

ŷ0 = xT
0
ŵ (16)

where ŵ is the weight vector determined from Equation (15).

One cannot expect a perfect match of the prediction and the measured modal param-

eters because of incompleteness of the model, insu�cient training data sets, uncertainties

in actual testing and measurements and so on. Of broader importance, however, one can

compute a con�dence interval around the point prediction ŷ0 to account for the inherent

uncertainties. The upper and lower bounds of a 100(1� �)% con�dence interval for the
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predicted output at the given input observation, namely ŷ0 in this case, is computed as9:

ŷ0 � t�=2;n�p

q
�̂2
�
(1 + xT

0
(XTX)�1x0) (17)

Once the �lter is trained, the newly measured frequency can be compared against

the con�dence interval. If the fundamental natural frequency falls outside the con�-

dence interval, then one may suspect with the given con�dence that some changes in

the underlying structural characteristic are caused by damage or other e�ects. Table 7

shows the predicted value of the fundamental frequency and a 95% con�dence interval

computed at the di�erent time of temperature pro�les from the second data set. The

�rst column of the table shows the starting time of each testing, and the second and

third columns present the lower and upper bounds of the con�dence interval, respec-

tively. These bounds are computed from Equation (17). The variables ŷ and y in Table 7

denote the predicted frequency from Equation (16) and the measured frequency from the

second testing, respectively.

Table 7: Comparison of the measured fundamental frequency and the 95% con�dence intervals

Time Con�dence Bounds y ŷ Relative� Extrapolation Check

Lower Upper Error(%) h0 (hmax)

06:02 7.592 7.669 7.630 7.329 3.95 3.6004 (> 0.7686)

08:00 7.660 7.755 7.707 7.528 2.32 5.9233 (> 0.7686)

10:02 7.612 7.712 7.662 7.638 0.31 6.6219 (> 0.7686)

12:00 7.435 7.550 7.493 7.579 1.15 9.0997 (> 0.7686)

14:01 7.463 7.570 7.517 7.503 0.19 8.0356 (> 0.7686)

16:00 7.379 7.424 7.401 7.449 0.64 0.5026 (< 0.7686)

18:00 7.407 7.451 7.429 7.361 0.92 0.4734 (< 0.7686)

20:05 7.338 7.378 7.358 7.321 0.51 0.1836 (< 0.7686)

21:54 7.367 7.408 7.388 7.319 0.93 0.2384 (< 0.7686)

24:00 7.389 7.431 7.410 7.347 0.85 0.3396 (< 0.7686)

* Relative Error (%)=100� jy � ŷj=ŷ

In predicting new observations, one should be careful not to extrapolate beyond the

input variable region containing the training data set. A model that �ts well inside the

region of the original data may perform poorly outside that region. In a multi-dimensional

input space, it is di�cult to decide if an input variable point lies inside or outside the

region of the original data. The diagonal elements of the hat matrixH(= X(XTX)�1XT )

are employed to detect a hidden extrapolation point.9 Let the largest diagonal value of

the hat matrix H to be hmax, and de�ne the smallest convex surface containing all of the

training data points as the input variable hull (IVH). The relative distance of any input

variable vector x0 to the centroid of the IVH is reected by

h0 = xT
0
(XTX)�1x0 (18)

If h0 > hmax, the point is outside the IVH and requires an extrapolation. The value of h0
depends both on the Euclidean distance of the corresponding point from the centroid of
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Figure 6: Reproduction of the second mode frequency using a linear �lter
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Figure 7: Prediction of the second mode frequency using a linear �lter

the training data and on the density of points in the IVH. In the last column of Table 7,

the h0 value of each input is compared to hmax. Only the last �ve points corresponding

to time 16:00, 18:00, 20:05, 21:54 and 24:00 are interpolation points. We presume that

only these data points inside the IVH are reliable for the prediction.

The measured fundamental frequency from the second data set, and the upper and

lower bounds of the 95% con�dence interval are plotted in Figure 5. Figure 5 reveals that

the measured frequencies corresponding to the interpolation points are consistently lower

than the associated lower bounds of the 95% prediction interval (except the one at time

16:00). The linear �lter was also trained using the second mode frequency from the �rst

data set and tested for prediction of the second mode frequency from the second data

set. Figures 6 and 7 show the reproduction of the training data set and the prediction

result for the second mode frequency, respectively. Again we observe that the measured

second frequency is lower than or close to the lower bound of the con�dence interval.
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This result implies that the sti�ness of the structure is deteriorated and/or the mass

of the structure is increased. Considering the facts that the Alamosa Canyon Bridge is a

concrete bridge, it had visible cracks over the deck, there was a severe rain prior to the

second test, and the drainage paths were �lled with debris and dirt, it is very possible

that these consistent decreases of the fundamental natural frequency were mainly caused

by the increase of the bridge mass as the Alamosa Canyon Bridge absorbed signi�cant

amount of moisture and the bridge retained some of the rainfall on its surface. Assuming

that the change of the bridge mass is solely responsible for the decrease of the funda-

mental frequencies within the interpolation points, the increase of mass is approximately

estimated as 1.62%. Considering the experimental study that several concrete bridges in

the United Kingdom absorbed considerable amount of moisture during damp weather,

and consequently increased the mass of the bridge approximately by 3 to 6 %,12 the

change of the mass estimated in this study falls within a reasonable range.

Note that statistical uncertainty bounds (mean � 2�) are added around the measured

frequencies in Figures 5 and 7 to show that the variation caused by thermal e�ect is larger

than the inherent uncertainties in the measured frequencies (The measured frequencies

in Figures 4 to 7 are the mean values computed by averaging thirty FRFs). The standard

deviation (�) of the frequencies is estimated using the procedure described in References 3

and 6.

5 SUMMARY and DISCUSSIONS

This paper has presented an adaptive �lter for predicting changes in modal parameters

of a full-scale bridge due to environmental temperature. Data from the Alamosa Canyon

Bridge in New Mexico were employed to demonstrate the applicability of the adaptive

�lter. The vibration tests were conducted during the summer of 1996 and 1997. The

�rst data set from 1996 test was used to train the adaptive �lter while the second data

set from 1997 test was used to test the prediction performance.

Changes in the frequencies are found linearly correlated with temperature readings

from di�erent parts of the bridge. The �lter uses spatial and temporal temperature distri-

butions to determine changes in the �rst and second mode frequencies. The simplicity of

the �lter belies its importance: the �lter is able to account for the non-stationarity in the

frequencies caused by an environmental factor. A linear �lter with two spatially-separated

temperature measurements and two temporally-separated temperature measurements re-

produces the variation of the frequencies of the �rst data set.

Based on the trained �lter system, a prediction interval of the frequency for a new

temperature pro�le is computed and the prediction performance is tested using the second

data set. The system de�nes a con�dence interval for future values of modal parameters

in order to discriminate between variations caused by temperature changes and those

indicative of structural change or other environmental e�ects. The comparison of the

prediction intervals obtained from the �rst data set and the measured frequencies from

the second test data reveals that the bridge experienced a statistically signi�cant decrease

in the �rst and second mode frequencies. Considering the severe rain prior to the testing

and the drainage system severely blocked by debris, it is very possible that this consistent

decrease of the frequencies was mainly caused by the increase of the bridge mass as the
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Alamosa Canyon Bridge absorbed signi�cant amount of moisture, and the bridge retained

much of the rainfall on its surface.

It should be kept in mind that the �lter system presented was developed for a par-

ticular bridge under particular environmental conditions. Further and well controlled

testings are required to fully validate this linear model. Although this study has been

limited to a single external variable (temperature), the approach might be extendible to

other environmental e�ects. To control for other environmental conditions and account

for larger-scale seasonal variations, tests should be conducted during di�erent times of the

year as well as di�erent times of a day, and measurements for other environmental factors

should be obtained. Furthermore, a continuous data collection system would allow the

�lter coe�cients to be more reliably updated, and to decrease the size of the con�dence

intervals. Last but not least, as shown in the test data, reliable damage detection must

account for the signi�cant non-stationary environmental processes. Continuous research

is needed to develop reliable approach to deal with the sources of variability from �eld

vibration tests.
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